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Abstract

There is still no comprehensive understanding concerning co-expression preservation across tissues
and concerning co-expression decline across ageing regarding age-related transcriptional dysregulation.
One objective was to assess the co-expression preservation of cross-tissue highly correlated gene
modules within specific tissues to infer the underlying gene regulatory network stability between tissues.
Modules were learnt by hierarchical clustering with Pearson correlation in human RNA-seq data. GO
enrichment analyses were applied to interpret the obtained modules. Some modules stably conserved
moderate to high co-expression within several specific tissues in line with the expectation that gene
co-expression networks are not entirely rearranged between tissues. Providing additional support that
many tissue-specific data and studies can be much more unified. Additionally, genes and modules
co-expression decline across ageing was evaluated, further deriving a kind of ”hub genes of ageing”.
Gene-gene relevance for ageing was inferred by PCA variable loadings, specifically describing the
co-expression variance in the direction of ageing. The sum of loadings per gene provided a kind of
”hubness of ageing” measure. A heavy and consensual GO term representation of the immune system
and proteostasis was obtained, as well as cell cycle regulation, respiratory chain, keratin-associated
proteins, and cellular proliferation, locomotion, and structure. It was proposed that the corresponding
gene-gene relationships might be interesting to delve into to assess the underlying mechanism of the
respective systems decline during ageing. This may be useful for developing intervention strategies to
delay or prevent ageing phenotypes such as immune senescence.
Keywords: Ageing; Tissue-specific regulation; Gene co-expression; RNA-seq data analysis.

1. Introduction
1.1. Gene Modules Co-expression Across and

Within Tissues
Detection of co-expression gene modules is fre-
quently used to infer about gene-gene interactions,
functional annotation and allow for a better under-
standing of disease origin and progression [1].

It is expected that gene regulation networks are
not entirely rearranged between tissues, and there
is still no comprehensive support that many tissue-
specific data and studies could be much more uni-
fied than it already is. Co-expression analysis can
be used to explore this concept.

Actually, there have been studies [2] showing
that consistent modules across tissues are espe-
cially prone to be enriched for Gene Ontology func-
tions, and that these functions tend to be those
which are essential to all tissues (e.g. mitosis).

A more recent study [3] shows that physically
closer tissues seem to be more similar in their
co-expression networks. Their network modules

were enriched in tissue-common functions like or-
ganelle membrane or immune-related functions
and tissue-specific functions like renal functions in
the kidney.

Another recent study [4], identified regulon mod-
ules that globally regulate multiple cell groups and
tissues across mouse cell atlases.

In the present work, a gene clustering is done
only one time in a cross-tissue approach and used
an equilibrated and substantial amount of samples
(455) per tissue. In light of this, the present work
has a more robust and equilibrated amount of hu-
man tissue samples for the co-expression mea-
sures than any other study (to our knowledge). Ad-
ditionally, the applied approach of assessing cross-
tissue-learnt-clusters in specific tissues is novel, at
least in this specific topic.
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1.2. Co-expression Changes Across Ageing And
Within Age Groups

Ageing occurs in all living organisms and is a
natural process that can be defined as a dete-
rioration of the cell functioning [5] thought to be
through a series of mechanisms namely the loss
of genomic stability, epigenetic alterations, loss of
proteostasis, deregulated nutrient signalling, mito-
chondrial dysfunction, cellular senescence, stem
cell exhaustion, deviant intercellular communica-
tion and telomere shortening [6]. These 9 age-
related phenotypes that appear to be conserved
among species are called the 9 hallmarks of age-
ing and have been consensual to this day.

Gene modules and their co-expression analy-
ses might also provide insight into the underlying
mechanisms of ageing. The concept of transcrip-
tional dysregulation has been proposed as a possi-
ble central mechanism of functional decline during
ageing; until now, its generality has not been com-
prehensively empirically supported.

There is already some evidence in terms of
increased transcriptional variability in scRNA-seq
across ageing in mice [7], and human pancreas [8].
This transcriptional noise levels that increase with
age are suggested as a possible consequence of
the accumulation of mutations or and epimutations
[9].

Then there is one recent study [10] that mea-
sures a global coordination level (GCL) metric in
19 cohorts of scRNA-seq data from mice and fruit
flies, finding a significant age-related decrease in
the GCL across cell types and organisms.

Additionally, it has been previously described
the decrease in gene co-expression within genetic
modules in bulk microarray data across 16 different
mice tissues [11].

The goal of the present work was to determine,
by analysing RNA-seq profiles across 26 different
tissues within several human age groups, whether
transcriptional dysregulation, as manifested in the
gene-gene co-expression, is a characteristic phe-
nomenon in ageing.

2. Methodologies
2.1. Data Loading
This project used publicly available RNA-seq gene
expression data collected from the Genotype-
Tissue Expression (GTEx) consortium official web-
site. GTEx samples were collected from 54 non-
diseased tissue sites across nearly 1000 individu-
als, primarily for molecular assays, including WGS,
WES, and RNA-Seq. GTEx’s gene read counts
dataset (v8) contains data from 838 postmortem
donors comprising 17382 RNA-seq samples of
56200 genes across 54 tissue sites and two cell
lines.

2.2. Data Filtering

2.2.1 Gene Filtering

Genes whose mean expression was below 1 were
filtered out. This approximately corresponds to the
37% quantile of the genes mean expression.

Additionally, genes were filtered by biotype. The
gene biotypes that were considered relevant and
kept after filtering were protein-coding, long in-
tergenic noncoding RNA (lincRNA), small nuclear
RNA (snRNA), micro RNA (miRNA), and small nu-
cleolar RNA (snoRNA).

2.2.2 Sample Filtering

Following GTEx Portal recommendations, samples
with RNA Integrity Number (RIN) smaller than 6.0
were filtered out.

Additionally, GTEx data contains two cell line
samples, namely the ”Cells - Cultured fibroblasts”
(504 samples) and ”Cells - EBV-transformed lym-
phocytes” (174 samples). These samples were
also removed as they are not the focus of the cur-
rent project.

After sample filtering, there remain 15030 sam-
ples.

2.3. DESeq2 Data Normalisation

For the present work which uses analyses between
samples and not within-sample comparisons, it is
required to consider sequencing depth and RNA
composition uppon data normalization. Thus an
adequate method is DESeq2 [12] normalization,
which was the one implemented.

DESeq2 normalisation is implemented as a
package for the R statistical environment (used R
version 3.4.3) and is available as part of the Bio-
conductor project.

2.4. Batch Effect Correction

Before batch effect removal, a log2 transformation
(the most common) was applied to the data. This
is done to compensate for the exponential amplifi-
cation of RNA-Seq PCR step and also because it
is desired to capture proportional changes in gene
expression rather than additive changes which is
typically biologically more relevant.

It was used a Linear Regression (LR) adjustment
for known confounders batch effect removal. The
known covariates removed were ischemic time, ex-
perimental batch and death type, fitting the model
for each gene separately. Known covariates were
regressed out using the R statistical environment’s
built-in ”lm” function.
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2.5. Sample Subsetting
2.5.1 Tissue-specific and cross-tissue analy-

sis

To ensure the tissue-specific and cross-tissue
analyses were comparable, the same total number
of samples per tissue was used in each tissue sub-
set (455 samples). Additionally, the same number
of samples from each tissue was used in the cross-
tissue analysis (37 samples).

This balance in samples required the discarding
of all tissues with fewer than 455 samples. The
resulting tissues are the Muscle - Skeletal, Whole
Blood, Skin - Sun Exposed (Lower leg), Artery -
Tibial, Adipose - Subcutaneous, Thyroid, Skin - Not
Sun Exposed (Suprapubic), Nerve - Tibial, Lung,
Esophagus - Mucosa, Adipose - Visceral (Omen-
tum) and Esophagus - Muscularis.

2.5.2 Age group analysis

Similar to the tissue analysis, in the age group
analysis, it is desired to obtain (”learning”) gene
modules by clustering algorithm within a cross-age
sample subset and then to reevaluate (”testing”)
those modules within different age groups sample
subsets.

The amount of samples per age group (20-29,
30-39, 40-49, 50-59, 60-69 and 70-79) was deter-
mined in the filtered data. In this Age analysis, it
is fundamental for the ”testing” age groups sample
subsets to have as many samples as possible and
the smallest age group (70-79) has 495 samples. It
is not desired to decrease this amount by sparing
samples to the cross-age subset, so the ”70-79”
age group was set aside from being used in the
”learning” cross-age subset.

So one option, to equilibrate the amount of sam-
ples between comparisons, would be to use 495
randomly chosen samples from each age group
for the ”testing” step because that is the minimum
number of samples found across age groups. Nev-
ertheless, the data has a heterogeneous distri-
bution of samples across the age groups regard-
ing the number of samples per tissue and gen-
der. As to proportionate an equilibrium between
age groups regarding the amount of samples per
tissue and gender, the minimum number of sam-
ples per tissue in each of the age groups for both
genders was determined. This reasoning applied
to all tissues for both genders results in 371 sam-
ples which can be used as testing data in each of
the age groups.

Regarding the data available for learning, the
same process was applied but, as mentioned, dis-
regarding the samples from ”70-79” age group.
Then, applying the same algorithm to the remain-
ing age groups, the available data for the learning

step was 953 samples per age group.
But this available data is not the actual data used

for learning since this data still contains the testing
data. The actual data used for learning is the sub-
traction of the samples used for testing from the
available data, which leaves 582 samples per age
group for the learning step.

2.6. Correlation Matrices
In each analysis, whether in tissue subsets or age
group subsets, the aim was to learn gene-gene re-
lationships. Thus, in this biological context, it was
desired to use similarity measures such as Pear-
son Correlation that captures similarities between
patterns (across samples), disregarding value in-
tensities. This way, the correlation matrices were
computed for all the tissue subsets and age group
subsets using the R statistical environment’s built-
in ”cor” function. In this context, whether two genes
are directly (positively) correlated or inversely (neg-
atively) correlated, they are of interest in both
cases. The squared correlations were used to sim-
plify the analysis, which is also a common practice
in this field.

2.7. Hierarchical Clustering of Genes
In each analysis, whether in tissue or age group
correlation matrices from learning subsets, a gene
clustering step was done by the hierarchical clus-
tering complete linkage method.

Correlation matrices were transformed into dis-
tances matrices by subtracting their values from
1, and clustering trees were computed using the
R statistical environment built-in ”hclust” function.
Then, the hierarchical trees were cut at a 0.40 dis-
tance threshold (0.60 squared correlation) with the
R statistical environment built-in ”cutree” function
to define the clusters. Finally, a minimum cluster
size filter of 10 genes was used to control the num-
ber of clusters obtained.

After clustering, the average squared correlation
of all the pairwise combinations of genes within
each cluster was computed and named as within-
cluster correlation or co-expression from this point
on. The within-cluster correlation was also com-
puted in the testing subsets, which is the reason
behind those subsets’ correlation matrices. All
these computed values allowed the visualisation
of changes in within-cluster correlation across sub-
sets in a heatmap.

2.8. Heatmapping
The heatmaps allowed to visualise changes in the
within-cluster correlation across subsets in a con-
venient way. Heatmapping was achieved with the
”pheatmap” function, which is implemented as a
package for the R statistical environment (R ver-
sion 4.0.2) and is available as part of the CRAN R
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repository project.

2.9. Gene Ontology Enrichment
After heatmapping, some clusters might reveal in-
teresting to delve into. To that end, a GO enrich-
ment was computed for all clusters in both anal-
ysis. Gene annotation from the GTEx dataset
(v8) was provided as Ensembl ID, which had to
be converted to gene symbol, a unique short ab-
breviation for the gene name. This conversion
was done using the ”mapIds” function, which is
implemented by the ”AnnotationDbi” package for
the R statistical environment and is available as
part of the Bioconductor project. For that end,
it was used mainly the ”org.Hs.eg.db” annotation
to get ”SYMBOL”, ”GENEBIOTYPE” and ”FULL-
NAME” annotations, and symbol ID’s were also
complemented by the ”EnsDb.Hsapiens.v79” an-
notation whenever that correspondence was not
found with ”org.Hs.eg.db”. Both annotation pack-
ages are available as part of the Bioconductor
project.

GO enrichment step was done using the
”topGO” package for the R statistical environment
available as part of the Bioconductor project.

Here follows a description of the used parame-
ters: The ”fisher” statistic test to compute the num-
ber of significantly annotated genes for each GO
term. The ”weight01” algorithm to deal with the
GO graph structure. The gene-to-GO mappings
annotation was ”annFUN.org”. A node size of 20
to prune the GO hierarchy from the terms with less
than 20 annotated genes. A p-value cutoff of 0.01.
An enrichment cutoff of 0.5. Enrichment is com-
puted by the log2 of the quotient of the number of
significant genes of a given GO term in a cluster by
the expected value given a random chance based
on all the genes available.

Three types of GO enrichments were computed:
The GO Biological Processes (GO-BP) enrichment
(e.g., signal transduction), the GO Molecular Func-
tion (GO-MF) enrichment (e.g., ATPase activity)
and the GO Cellular Component (GO-CC) enrich-
ment (e.g., ribosome).

2.10. Cluster Correlation Slope with Age Analysis
In the age analysis, it was obtained the within-
clusters correlation across several age groups.
Then, those correlation values were used to esti-
mate their slope against age, where for each age
group, it was assigned a median value. The built-in
”lm” function of the R statistical environment was
used to estimate the slope and p-values assuming
a y=m·x+b regression type, where ”y” is the vec-
tor of a clusters’ within-cluster correlation across
ageing and ”x” is the vector of median age val-
ues representing each correspondent age group,
x=(25,35,45,55,65,75).

2.11. Age Principal Component Analysis
Each correlation matrix corresponding to an age
group (20-29, 30-39, 40-49, 50-59, 60-69 and 70-
79) was transformed into a single vector of correla-
tions. Then, each age group vector of correlations
was inserted as a row of a matrix. Thus, each row
of the resulting matrix is a whole age group correla-
tion matrix, and each column is the corresponding
gene-gene pair.

A Principal Component Analysis (PCA) was ap-
plied to this combined matrix where the data was
interpreted as 6 samples (age groups) with hun-
dreds of millions of features (variables) that are the
gene-gene correlations in each of the samples.

PCA was done using the R statistical environ-
ment built-in ”prcomp” function with variables be-
ing shifted to be zero centred (center=True) and
with the variables being scaled to have unit vari-
ance (scale=True).

3. Results and Discussion
3.1. Gene Modules Across and Within Tissues
As introduced, the present work attempts to assess
the plausibility of unifying, much more than it al-
ready is, tissue-specific data and studies. This can
be relevant in cases where there is lack of sam-
ples, and also elucidates on the feasibility of pre-
dicting gene expression across different tissues or
cell types based on a single model.

3.1.1 Three Main Types of Module Behaviour
Across Tissues

As described in section 2.6, the correlation be-
tween all possible gene pairs was computed us-
ing samples from different tissues (”CrossTissue”).
Then the analysis was focused on the highly corre-
lated clusters learnt by hierarchical clustering utilis-
ing the mentioned correlations as a similarity mea-
sure.

Sixty-five highly correlated clusters across dif-
ferent tissues were obtained. Then, it was anal-
ysed how conserved the correlation between clus-
ter members was within specific tissues by means
of the resulting heatmap represented in figure 1.

This approach was expected to detect mainly
three types of clusters regarding their within-cluster
correlation conservation within the different tis-
sues. Those are the ones further analysed and
highlighted in figure 1.

One type of expected clusters (”Type1” from fig-
ure 1) capture tightly regulated modules of genes
that keep their good coordination across most or all
the tissues. Finding this kind of modules matches
the expectation that gene co-expression networks
are not entirely rearranged between tissues and
probably cell types. The clusters highlighted as
”Type1” are related to ribosomal proteins, NADH
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Figure 1: Heatmap of within-cluster squared Pearson correlation (x100) within different tissues. Colour scale reflects the correla-
tion values. The 65 gene clusters were learnt by complete linkage hierarchical clustering in the ”CrossTissue” sample subset (first
line of the heatmap) with a minimum cluster size filter of 10 genes and a squared Pearson correlation clustering threshold of 0.60.
Within-cluster correlation was computed in the remaining tissue sample subsets (lines 2-13 of the heatmap) and the last line of
the heatmap carries the within-cluster correlation of equally sized random clusters from ”CrossTissue” subset. Heatmap columns
are clustered into 9 groups by complete linkage and Pearson correlation between columns. Beneath the heatmap 3 main types of
clusters are identified according to their correlation patterns across tissues. A very broad identification of clusters is assigned to
the main cluster types based on their respective enriched GO terms and gene annotations.

and ATP metabolism, muscle contraction, devel-
opment and differentiation, lincRNAs, and X and
Y linked genes. These clusters were captured as
highly correlated across tissues and within tissues.
For this to be possible, they should be active genes
in those tissues (well detectable expression) and/or
have enough expression variance in those tissues
for correlation to be adequately captured if there
is actual co-expression. NADH/ATP and ribosomal
protein clusters were expected to have been cap-
tured in this highly coordinated fashion because
they represent housekeeping genes.

The mean expression and variance of genes in
cluster 65 in each tissue subset (and cross-tissue)
were analysed, also exemplifying the similarly be-
haved remaining clusters from ”Type1” group of
clusters, except for cluster 54. Cluster 54 is mainly
composed of lincRNAs with extremely low expres-
sion values. It is though that cluster 54 expression
values do not distinguish themselves from RNA-
seq noise. So the question is if the captured high
correlation values are noise-driven or biological-
signal-driven. If it is biological-signal-driven, this
might be an interesting functional module to delve
into. Otherwise, if it is noise-driven, the only pro-
posed explanation is that some technical factors
might influence these low expressed genes in a
consistent way across samples.

NADH/ATP related genes of cluster 65 were ob-
served to have high expression levels in all tis-
sues but a fairly low variance, meaning that even
with low variance, their expression levels are so
tightly coordinated that a high correlation can still
be found. Cluster 65 genes include cytochrome,
NADH dehydrogenases and ATP synthase genes
implicated in respiratory electron transport. Here,
it can be observed that genes participating in
functional modules such as this one can be co-

expressed even at the tissue scale and within sev-
eral tissues. This is consistent with the expec-
tation that many cellular processes which require
a specific stoichiometry of their molecular compo-
nents to be operational, independently of tissue
type, must be universally co-regulated.

Observing figure 1, it can be seen that there is
a great portion of captured clusters with stable co-
expression across tissues, even if with moderate
correlation values. In this analysis, 7 out of 65
clusters were captured as stable in several tissues
with extremely high correlation values within the
tissues. However, a gene cluster does not need
a correlation as high as 0.60 for its genes to be
considered co-expressed. Therefore, gene clus-
ters with stable correlation values between 0.30
and 0.40 within several tissues are still potentially
co-regulated. And, as expected, a considerable
amount of that kind of clusters was found. This
might mean that many tissue-specific data and
studies can be unified to some extent much more
than is currently done.

Regarding a second type of expected clusters
(”Type2” from figure 1), they would have a high
within-cluster correlation in some tissues and a
very low correlation in others. This type is the
case of clusters 37, 8 and 63 present in figure ??
which revealed high correlation values in skin tis-
sues, but very low values in the remaining tissues.
These clusters are mainly composed of keratins
and keratin-associated protein genes (KAPs). Ker-
atins are the major structural proteins of the verte-
brate epidermis, forming keratin intermediate fila-
ments (KIFs) which are a critical component of the
stratum corneum, the outermost layer of the epi-
dermis [13]. KAPs are responsible for forming the
protein matrix between the KIFs [14]. It was ob-
served that these clusters genes have high expres-
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sion variance and are highly expressed in skin tis-
sues. Except for skin tissues and ”Adipose - Sub-
cutaneous” tissue the correlation of these clusters
is as low as random equally sized clusters which
appears to be a consequence of their very low ex-
pression levels that might mean that the respective
genes are inactive.

Interestingly, clusters 37, 8 and 63 genes are
moderately correlated in ”Adipose - Subcutaneous”
tissue accompanied by moderate expression lev-
els even though there is minimal variance. This
pattern might be explained by the physical proxim-
ity of the ”Adipose - Subcutaneous” tissue with the
skin tissue. They might share a similar microen-
vironment, and there might be some signalling
molecules that can make Subcutaneous adipose
tissue cells have expression coordination patterns
within these clusters genes. Otherwise, it can be
sample contamination from a neighbouring tissue
(such as skin tissue) upon extraction of the sam-
ple.

Then there is a third type of expected clus-
ters (”Type3” from figure 1) where the correla-
tion would be low in all of the tissues. This can
be because they either have very low variance
within tissues, or because the genes just aren’t
that much co-expressed within tissues. Hereupon,
these clusters would only have been captured be-
cause they change expression levels in a coordi-
nated enough fashion between tissues for that pat-
tern to be captured as a good correlation across
tissues (”CrossTissue” sample subset).

Actually, the ”Type3” grouped clusters in figure
1 appear to be related to muscle development
and function. In fact, cluster 18 genes’ mean ex-
pression show it is clearly overexpressed in skele-
tal muscle tissue compared with the other tis-
sues. This coordinated overexpression in skele-
tal muscle tissue creates a ’step’ in expression
from other tissues to muscle tissue when look-
ing at the ’CrossTissue’ subset. That coordinated
overexpression must be a main driver of the high
squared correlation (0.73) captured for this cluster
18 across tissues.

In cluster 18 GO enrichment analysis, it was ob-
served enrichment in the GO-BP term of ”mito-
chondrial transmembrane transport” as well as the
GO-CC term of ”myofibril”. Both terms (and re-
spective genes) might not be directly related, but
they can be part of muscle-specific functions; thus,
both having an increase in expression in the mus-
cle tissue creates expression coordination across
tissues.

This coordination is reasonable because my-
ofibril is a rod-like organelle of a muscle cell re-
sponsible for muscle contraction [15] and regarding
”mitochondrial transmembrane transport”, skeletal

muscle has different types of mitochondria than
most tissues which possess subtle differences in
biochemical and functional properties and distinct
subcellular regions [16]. The most abundant mito-
chondria type in skeletal muscle is IMF mitochon-
dria, located in close contact with the myofibril and
found to have higher rates of protein synthesises,
enzyme activities, and respiration [16].

This observed pattern between the biological
process GO term of ”mitochondrial transmembrane
transport” and the GO-CC term of ”myofibril” is
rather interesting and might be an exemplar case
of genes that, by participating in associated func-
tional modules, need to be upregulated in a con-
certed way at very different cellular scales, includ-
ing at the level of entire organelles (e.g. mitochon-
dria and myofibrils).

3.2. Gene Modules Across Ageing And Within Age
Groups

As explained in the methodologies section, gene
modules were learnt in a cross-tissue and cross-
age approach and then evaluated in the several
age group subsets present in figure 2.

In figure 2, the clusters that significantly (p-
value<0.10) decreased their within-cluster corre-
lation with age are represented in the red tab
columns, and the further to the left, the higher the
decrease in within-cluster correlation across age-
ing. A p-value of 0.10 was considered as signifi-
cant because the decrease in within-cluster corre-
lation across ageing is not expected to be strictly
linear. Or at least it was desired to capture de-
creases in correlation that could slightly deviate
from a linear pattern.

As expected, it was obtained several clusters
with a significant decrease in correlation across
ageing. The subsequent analysis will characterise
the six most prominent clusters that decrease cor-
relation with ageing, trying to understand its mean-
ing and establishing some hypotheses.

3.2.1 Keratin Clusters

The first 2 clusters with the highest decrease in cor-
relation across ageing are cluster 39 (16 genes)
and cluster 40 (24 genes) which are all keratin-
associated proteins in both clusters.

Stratum corneum KIFs are of major importance
for the barrier properties of skin, the water-holding
capacity of the skin, the mechanical strength and
elastic resilience of skin, and skin pathologies [17].
A decline of those skin properties, as well as wrin-
kle formation, is a common sign of ageing [13]. In
addition, studies [18] found relationships between
fine wrinkle formation, loss of elastic properties of
the epidermis and KIFs disruption that might be
caused by alteration of keratin expressions. In the
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Figure 2: Heatmap of within-cluster squared Pearson correlation (x100) within different age group subsets. The colour scale
reflects the correlation values. The 42 gene clusters were learnt by complete linkage hierarchical clustering in the ”Cross” sample
subset (first line of the heatmap) with a minimum cluster size filter of 10 genes and a squared Pearson correlation clustering
threshold of 0.60. Within-clusters correlation was computed in each of the age group sample subsets (lines 2-7 of the heatmap)
and the last line of the heatmap carries the within-cluster correlation of equally sized random clusters from the ”Cross” subset.
Heatmap columns are grouped into 3 groups according to the columns vector linear regressed slope against age group vector
({25,35,45,55,65,75}). Blue means positive slope with the linear regression p-value<0.10; red means negative slope with the
linear regression p-value<0.10; grey is any slope that has the linear regression p-value>0.10. Significant negative sloped (red)
columns are ordered with increasing absolute slope values to the left.

present study, it is observed that these genes regu-
lation appears to loosen across ageing. Therefore,
it might be insightful to assess which gene pairs
within clusters 39 and 40 drive the most decrease
of the within-cluster correlation of the said clusters.

3.2.2 Immune System Clusters

After the keratin clusters, a set of immune-related
clusters were obtained. This observation is consis-
tent with the consensual decline of immune system
functionality across ageing [19].

Cluster 7 GO enrichment analysis revealed im-
mune responses by the complement system. Its
main biological function is to recognise dam-
aged or altered “self” components, such as apop-
totic and necrotic cells, abnormal protein as-
semblies (e.g. amyloids, clots or antibody ag-
gregates), or “foreign” materials such as parti-
cles, macromolecules or microorganisms, promot-
ing their elimination [20]. However, an overactive
system can cause autoimmune and inflammatory
diseases such as Age-related Macular Degenera-
tion (AMD), whereas an inactive complement sys-
tem results in an increased risk for infection [20].
For instance, despite great progress in uncovering
its genetic links, AMD remains an incurable dis-
ease. The present study might be able to give in-
sights into the primary cause of the ageing physio-
logical changes that contribute to autoimmune dis-
eases such as AMD establishing a link with genetic
reasoning.

As for cluster 31, its GO enrichment analysis
pointed to Natural Killer (NK) cells and Neutrophils.
Neutrophils are phagocytic leukocytes that com-
prise the first line of immune response against in-
vading pathogens [21], mediating the response to

bacterial and fungal infections, which are largely
responsible for the higher rates of mortality and
morbidity in the elderly population [22]. Neutrophil
function has been described [22] to decline with
age and to be a significant factor in immune senes-
cence, but little is known about the molecular basis
of this loss of function.

NK cells are one of the major mediators of cel-
lular cytotoxicity. This is the ability to kill other
cells, which is an important effector mechanism
of the immune system to combat viral infections
and cancer [23]. With age, significant impairments
have been reported in the main mechanisms by
which NK cells confer host protection [19]. Actually,
the age-associated decline in NK cell function has
been associated with slower resolution of inflam-
matory responses, increased susceptibility of viral
infections, being that NK cells are also involved in
the recognition, and elimination of senescent cells
[19].

It is proposed that looking into the genes com-
posing cluster 31 and their decrease in correlation
with age might give insight into the molecular ba-
sis of NK cells and neutrophils age-related loss of
function.

Regarding cluster 38 GO enrichment analysis,
it is evident that it represents the system of Major
Histocompatibility Complex (MHC) class I. Class
I MHC molecules bind peptides generated mainly
from the degradation of cytosolic proteins by the
proteasome and display those peptides to the cell’s
exterior by being inserted in the external plasma
membrane. This external display of peptides has
the intent of exhibiting them to Cytotoxic T Lym-
phocyte (CTLs) cells.

The repertoire of peptides presented by MHC
class I molecules in a given set of cells is termed
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the immunopeptidome. This action of displaying
the immunopeptidome has mainly three objectives.
One is to display peptides from normal cellular pro-
tein turnover for the cells to be recognized as not
foreign [24]. A second one is for the CTLs to recog-
nize tumour cells by displaying malignant charac-
teristic immunopeptidomes [25]. And the third one
is for the CTLs to recognize virus-infected cells that
display foreign peptides in their immunopeptidome
[24].

As discussed before, ageing is associated with
an increasingly insufficient immune response, and
MHC I decrease in coordination across ageing may
play an important part in this process.

3.3. Genome-Wide Gene-Gene Relationships Across
Ageing

As explained in the methods section 2.11 a PCA
was applied to the 6 age group correlation matrices
where the variables were the hundreds of millions
of gene-gene pairs. The resulting PC1 from this
analysis follows in figure 3.

Figure 3: PCA of age groups co-expression plot, where the
variables are the gene-gene pairs squared Pearson correla-
tion. Corresponding variable loadings give more or less weight
to the respective gene-gene pairs in explaining the data varia-
tion in PC1 direction by means of its squared Pearson correla-
tion. Bellow the plot it is provided the Pearson correlation be-
tween PC1 age groups coordinates and mean age groups vec-
tor ({25,35,45,55,65,75}) suggesting that PC1 direction aligns
significantly with ageing.

Gratifyingly, the principal component that most
describes the data variance (>30%) is the one and
only that accurately describes the greatest vari-
ance of the data in the direction of ageing. Ac-
tually, age groups PC1 coordinates have a Pear-
son correlation with ageing (mean age groups vec-
tor {25,35,45,55,65,75}) of 0.993 with a p-value of
0.00008. This is accurate enough to interpret PC1
variable (gene-gene pairs correlation) loadings as
a way to measure the contribution that a specific
gene-gene pair provides in explaining ageing data
variation by means of its genes squared correlation
across ageing.

Having the variable loadings, the next step is
to explore the respective values in an attempt to
highlight the gene-gene pairs that are the most rel-
evant to ageing according to this approach. Un-
fortunately, the trend of loading values is fairly lin-
ear, making it challenging to choose a meaningful
threshold, and even if it was chosen a threshold.

The developed strategy was to sum all of the
loading values in which a particular gene partici-
pates, for all of the genes, as is illustrated in figure
4.

Figure 4: Sum of PC1 variable loading values in which each
gene participates. This PC1 was derived from the PCA (figure
3) of the age groups subsets gene-gene pairs squared Pear-
son correlation. The 2 red lines represent an attempt to find a
threshold sum of loadings value.

This way, instead of having hundreds of millions
of variables, there is only about 20’000 genes.
Conveniently, this sum of loading values acquired
an interesting pattern represented in figure 4. This
approach can be interpreted as evaluating the hub-
ness of genes regarding their interaction’s rele-
vance in describing ageing data variance. Ob-
serving figure 4, it is much feasible than before to
choose a threshold. By means of intersecting the
two red lines in the figure, it can be chosen as a
threshold the first 300 genes. According to their
relationship’s relevance in describing ageing data
variation, these 300 genes can be interpreted as
”hub genes of ageing”. These 300 genes with the
highest sum of loadings might be interesting to ex-
plore, and GO enrichment analyses were applied.

From the obtained GO terms, the most com-
monly associated with ageing are responses
to unfolded protein, ubiquitin-dependent protein
catabolic processes and Endoplasmatic Reticu-
lum (ER) and Golgi Apparatus related transports.
These results are clear indications of the loss
of proteostasis (protein homeostasis) hallmark of
ageing. This hallmark of ageing [6] means that
ageing and some ageing-related diseases are
linked to impaired proteostasis. Proteostasis in-
volves mechanisms for the stabilisation of correctly
folded proteins and mechanisms for the degrada-
tion of proteins. The Autophagy-lysosomal sys-
tem and the ubiquitin-proteasome system are the
two central proteolytic systems implicated in pro-
tein quality control, and both are described to de-
cline with ageing [6]. The results strongly suggest
that some genes responsible for this process of
protein quality control through protein degradation
by the ubiquitin-proteasome system have consid-
erable changes in their coordination across age-
ing. This decrease in coordination might be natu-
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ral and healthy, just meaning a healthy or intended
change in gene-gene relationships and not a de-
cline in regulation across ageing due to some kind
of damage accumulation, thus pertinent to ascer-
tain. Actually, it could represent intended healthy
adaptation changes in response to ageing. Other-
wise, we could age much more aggressively.

The second most consensual hallmark of ageing
obtained is the Epigenetic Alterations by Histone
Modification [6] here represented by the GO term
”regulation of histone deacetylation”. There are
several histone acetyltransferases and deacety-
lases highly associated with the process of age-
ing [26], therefore it is highly consistent for a his-
tone deacetylation GO term to reveal himself in this
analysis. If histone deacetylation becomes less ef-
ficient with ageing, there will be less transcriptional
regulation in terms of gene suppression.

It is important to note that we should not be
overly confident when interpreting the GO term re-
sults across the whole present work. It might be
possible to more or less link almost every gene or
GO term to ageing or to consider them interesting
in this regard.

With this in mind, additionally, there are some
less apparently related with ageing GO terms, that
after looking into, revealed themselves interesting.
One of them relates to transforming growth factor
βββ (TGF-βββ) which is a highly pleiotropic cytokine
that plays an essential role in wound healing, an-
giogenesis, immunoregulation and cancer. While
TGF-βββ might be underproduced in some autoim-
mune diseases, it is overproduced in many patho-
logical conditions [27]. This means it is essential
for TGF-βββ to be minutiously regulated according to
its healthy demand, suggesting that it might be rel-
evant to analyse the genes that contributed to the
enrichment of this GO term and to ascertain their
interactions in terms of correlation across ageing.

Another interesting GO term is ”regulation of fi-
broblast migration” because it is known [28] that
across ageing, the loss of proliferative and migra-
tory activity of fibroblasts is coupled with the loss
of wound closure ability and skin repair, which
are consensual signs of ageing. By analysing
these results of fibroblast migration relationships,
it could unveil relevant information that might indi-
cate potential therapeutic targets for the mentioned
ageing-related issues.

Lastly, ”RNA secondary structure unwinding” ca-
pacity play an important part in translational regula-
tion [29]. Thus, its dysregulation can be another in-
herent aspect of ageing that should be researched.

4. Conclusions
4.1. Gene Modules Across and Within Tissues
It was obtained 65 highly correlated gene modules
across tissues. It was observed that some pre-

serve its high correlation within several specific tis-
sues in a stable way. Others displayed lower but
still considerable correlation values within several
specific tissues in a stable manner. Some clusters
would only preserve considerable or high correla-
tion values within a small set of specific tissues.
Moreover, some clusters exhibited very low values
within any of the utilised tissues. This analysis ap-
pears to be in agreement with the expectation that
gene co-expression networks are not entirely re-
arranged between tissues and supports that many
tissue-specific data and studies can be unified to
some extent, much more than is currently done.

4.2. Gene-Gene Relationships Across Ageing
Among highly correlated clusters captured in a
cross-age sample subset, some revealed a signifi-
cant decrease in correlation across the several age
group subsets. The ones with the most decrease
were keratin-related clusters hypothesized to play
a part in the decline of the healthy proprieties of
skin and hair shaft during ageing. One other group
of clusters with a significant decrease in correla-
tion across ageing were immune system-related
clusters. These clusters mainly comprised GO
terms associated with complement binding, neu-
trophils, natural killer cells and major histocompat-
ibility complex class I molecules. All of these sys-
tems were discussed to have declining functionality
across ageing with impactful consequences. It was
proposed that these cluster’s gene-gene relation-
ships might be interesting to delve into as means
to assess the underlying mechanism of the respec-
tive systems decline during ageing.

Additionally, a more genome-wide approach al-
lowed to evaluate which gene-gene relationships
explain the most the data variance in the direc-
tion of ageing, as well as the ’hubness’ of genes
in the same perspective as ’hub genes of age-
ing’. Some deeply interconnected GO enriched
terms were obtained, which revealed to be consis-
tent with the consensual hallmarks of ageing. In
this work it was shown that there are large-scale
changes in gene co-expression associated with the
ageing process.
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